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XXIV.—On the development of the disturbing Function, upon which depend
the inequalities of the motions of the Planets, caused by their mutual attrac-
tion. By Jamgs Ivory, K.H., M.A4., F.R.S., Instit. Reg. Sc. Paris. Corresp. et
Reg. Sc. Gottin. Corresp.

Received May 30,—Read June 20, 1833.

THE perturbations of the planets caused by their mutual attraction depend
chiefly upon one algebraic expression, from the development of which all the
inequalities of their motions are derived. This function is very complicated,
and requires much labour and many tedious operations to expand it in a series
of parts which can be separately computed according to the occasions of the
astronomer. The progress of physical astronomy has undoubtedly been re-
tarded by the excessive length and irksomeness attending the arithmetical
calculation of the inequalities. On this subject astronomers generally and
continually complain ; and that their complaints are well founded, is very aptly
illustrated by a paper contained in the last year’s Transactions of this Society.

The disturbing function is usually expanded in parts arranged according to
the powers and products of the excentricities and the inclinations of the orbits
to the ecliptic; and, as these elements are always small, the resulting series
decreases in every case with great rapidity. No difficulty would therefore be
found in this research, if an inequality depended solely on the quantity of the
coeflicient of its argument in the expanded function ; because the terms of the
series decrease so fast, that all of them, except those of the first order, or, at
most, those of the first and second orders, might be safely neglected, as pro-
ducing no sensible variation in the planet’s motion. But the magnitude of an
inequality depends upon the length of its period, as well as upon the coefficient
of its argument. When the former embraces a course of many years, the latter,
although almost evanescent in the differential equation, acquires a great mul-
tiplier in the process of integration, and thus comes to have a sensible effect
on the place of the planet. Such is the origin of some of the most remarkable
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560 MR. IVORY ON THE DEVELOPMENT

of the planetary irregularities, and in particular, of the great equations in the
‘mean motions of Jupiter and Saturn, the discovery of which does so much
honour to the sagacity of Larrace. It is not, therefore, enough to calculate
the terms of the first order, or of the first and second orders, in the expansion
of the disturbing function. This is already done in most of the books that
treat of physical astronomy with all the care and fulness which the importance
of the subject demands, leaving little room for further improvement. In the
present state of the theory of the planetary motions, it is requisite that the
astronomer have it in his power to compute any term in the expansion of the
disturbing function below the sixth order; since it has been found that there
are inequalities depending upon terms of the fifth order, which have a sensible
effect on the motions of some of the planets.

A research that has for its object the lessening of the difficulty attending
the expansion of the disturbing function, and the bringing of that expression
more under the power of the astronomer, is one of considerable interest, and of
some moment to the progress of physical astronomy. But the question is not
to exhibit separately every individual argument with its coefficient, which
would be of little utility in practice, since, although their number be infinite,
very few of them are of any account in computing the place of a planet. The
end to be aimed at, is to give the function such a form that the astronomer
may have it in his power to select any inequality he may wish to examine, and
to compute the coefficient of its argument by an arithmetical process of mo-
derate length. The present Paper is an attempt of this kind. The investiga-
tion comprehends every argument not passing the fifth order; but, as the for-
mulas are regular, the method may be extended indefinitely to any order.

1. Let 2, y, 2, represent the rectangular coordinates of the disturbed planet,
2 being perpendicular to a fixed plane passing through the sun’s centre,
at which point the origin of the coordinates is placed: in like manner let
2, i, 2’ be the coordinates of the disturbing planet; and put ' for the pro-
portion of the mass of this planet to the sum of the masses of the sun and the
disturbed planet ; then, R denoting the disturbing function, we shall have,

R=m { 1 _x.r'-i—yy’-i—zz’}.
AV =P+ P+ =P ()
If » and v’ denote the distances of the disturbed and disturbing planets from
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the sun’s centre ; », their angular distance seen at the same point; and ¢, their
rectilinear distance from one another, then,

e=aS1% — 277 cosw -+ 1
R

!

7 Cosw
7

$
&
It appears, therefore, that the function to be expanded consists of two parts,

L1 . . .
of which 2 the reciprocal of the distance of the two planets, is common to the

disturbing functions of both; but this is not the case with the other part, in
which r and ' do not enter alike. For this reason it will contribute to distinct-
ness to expand the two parts separately. But, previously, it is necessary to express
cos » in terms of the angular motions of the planets in their respective orbits.

If v represent the angular distance of the disturbed planet in its orbit from

a fixed origin, and P the place of the node, that is, of the intersection of the
orbit with the immoveable plane of 2y, P being reckoned in the same plane
and from the same origin as v, then » — P will be the angular distance of the
planet from the node. Further, if A be the celestial arc between the node and
the intersection of the orbits of the two planets, the distance of the planet
from the same intersection will be equal to

v—P—A.
If the foregoing symbols be accented and transferred with like significations
to the disturbing planet, the celestial arc between that planet and the inter-
section of the orbits will be equal to

v —P — Al
Now v — P — A and o' — P' — A’ are two sides of a triangle of which the arc
w is the third side ; wherefore if I be the inclination of the two orbits, we shall

have
cosw=cos (v — P — A)cos(v — P — A

+cosIsin(v — P— A)sin () — P — A'),
or, which is the same thing,
cos.w_—:cos2%I.cos(u—v'—P+P’-— A+ A)
Fsin? & Icos(oto—P—P — A — A,
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"Let N be the place of the node of the disturbed planet reckoned in the im-
moveable plane of x y, and ¢ the inclination of the orbit to the same plane:
then, if » represent the longitude of the intersection of the orbits of the two
planets, A will be the hypothenuse of a right-angled triangle, of which ¢ is one
angle, and » — N the side adjacent to ¢; wherefore

tan(v;—N).

tan A = cos? ?

and, by the usual methods,
A=y~ N+tan? -sin2( - N) + 5 tan? & sin 4 (o — N), &c.;
and if we put
£ = tan2 = sin 2 (s — N) + = tan? = sin4 (v — N), &e,,
we shall have
P+A=v+P-—N+,§.

Let [P — N] be the value of P — N at some given epoch: then the differen-
tials of N and P being d N and cos . d N, we shall have generally,

P—N=[P—N]—/dN+ [cosi.dN=[P—N]—2 [sin2-- N,

the integral being taken for the time elapsed from the epoch. It thus appears
that P —Nmay be considered as an invariable arc, or as one subject to an
almost insensible secular equation. In order to abridge expressions, let us now
put ‘
e o ¢

z=[P—N] —-2./.sm2—2—dN+§;
then

v—P—A=v—a—y ‘

If the symbols which stand for the elements of the disturbed planet be as-

sumed, when accented, to represent the like elements of the disturbing planet,
we shall bave similarly,

o =[P — N —2fsin2%dN’—I—%’,

=P — A=t — o — .



OF THE DISTURBING FUNCTION. 563

The value of cos » will now be thus expressed,
2 1 ! !
cosw=cos? 5 I.cos (v — v — &« 4 &)

., 1
+sin? 5 I.cos (v+ v — e —a —2)).

It remains to determine I, the inclination of the orbits, and », the longitude
of their intersection. Now I is the vertical angle of a triangle of which N — N/
is the base, and ¢ and ¢ the adjacent angles, one being interior and the other
exterior to the triangle: wherefore

cos I = cosicos? 4 sinésiné cos (N — N').

In the same triangle, a Vperpendicular being let fall upon the base from the
vertical angle, » — N and » — N' are the arcs between the perpendicular and
the extremities of the base; and hence,

t( N+N’)___sin(i—i') N-N
cot \v ——5 —Sin(i+i’)'COt g

In the method here followed, the expression of cos » is as simple and as little
troublesome in calculation, as it would be if one of the orbits were adopted
for the immoveable plane.

2. Let {, ¢, e, = represent the mean motion, the epoch, the excentricity, and
the place of the perihelion, of the disturbed planet at the time for which we
are computing: if this time be near the epoch for which the elements have
been assigned, the values at the epoch may be taken as the true values; and
if a great interval has elapsed, the values at the epoch may be corrected by
their secular equations. Further, put w for the mean anomaly, ¢ for the
equation of the centre, e for the mean distance, and @ (1— s) for the radius

vector : then,

v=_{4¢+o,
pw=y+:¢— =,
y=a(l—29),

And the values of ¢ and s, found by the solution of KepLER’s problem, are
expressed by the usual series, viz.
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r=e.2sinp s==ecosw
' 5sin2p ‘ cos2p — 1
o 22T R 2 O5%
-+ e?. 7 + e2. 2
., 13sin3p — 8sinp 2 3cos3p — 3cosp
3
+o 2 oo TR
103 sin4p — 44sin2 cos4p — cos2p
4 el ottt
+e . 96 +e4' 3
 1097sin5u—645sin3p + 50 sin p 5 lroosop—li’»ocos.)p.—[-lOcosM
+e. 960 +e 384

Using always the same symbols which stand for the elements of the disturbed
planet, when accented, to represent the like elements of the disturbing planet,
and introducing the new characters ¢ and ¢' in order to shorten expressions,
we shall have,

v—a=Cl4+sct—ato=0¢4¢
vl_al=€l+sl_wl+0j:¢l+o_!‘
If these values, as well the values of » and #/, be substituted in that part of the
disturbing function which is more easily dealt with, we shall obtain,

7 Cosw a

r,g —_ /2 {COSZ’“I COS(¢—'¢ +0'“0') (

l—S

1 —s ')‘
c o1 ) . 1 —
+S1n2—Q~I.cos(¢—|—¢ +a—|—a’-—2u).(~r:;)é};

or,

e, e L . 00
| (1 —s)sin(c — o)

(1—=s)

——cos2r;~I.sin (p—0).

+ sin2%I .cos (p4+¢' —2v). (= S()lcf_s (S',r); -)

oo 1 (1 — s)sin (¢ + o)
—sin? 5 I.cos(p+ ¢ —2v). (T=sy }
The inspecting of this formula is sufficient to show that the expansion of the
part multiplied by sin® 7 I is deducible without calculation from the expansion
of the other part. For, as ¢” is a series of the sines, and s a series of the cosines,
of the multiples of ', the former will change its sign with x/, while the latter
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will not vary: wherefore the expansion of the part multiplied by sin?Z I will
be obtained from the expansion of the other part, merely by making x’ nega-
tive, and writing ¢ 4 ¢’ — 2 in place of ¢ — ¢’ in all the arguments.

We have therefore only to expand the two first lines of the expression, for
which purpose they may be thus written :

cosco”’

cos (p — ¢). {(l —s)cosa X = a—p - S)SIna+((sm‘;%2}

+ sin (p — ¢') . {—(1 —s)sinax(—lg—o_—_-—‘-m:,)g + (1 — ) cose X ((lsu_i_(rs,))g}

Neglecting quantities above the fifth order Wlth respect to the excentricities,
we have,
a? s ¢? st

(I—9cose=1—s— 5 +-5 +24 Zi

. 0'3 30—3 0-5
(1_8)81n'6.=6_86—~6~+~6'+~1—2—6;

And, if we assume,
() ¢)) (2) (%)
(1—s)cose=A "+ A "ecosp+ A e*cos2p...+A cosbp,
1 — s)sine = BY esin +B(2)e2sin2 ....B(5)e5sin5 ;
w [ I

we shall readily find,

A(0)=1 %__g_; B(l) 2-——2—32+§53e4
e L L e
A(2)= “;_ _332 B(g) 274 3(13
A(s)=_;;8_ “%’Z o2 B(4)=§g

A(4) — T(% B(a) — 2%76

A(5)_l_7§

MDCCCXXXIII. 4D
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And, by proceeding similarly,

(«199;5-%,-); =a® +a®. dcosp +a®. e2cos 24 ... + o). 5 cos 5

('iﬁ'lg%'ji— M. sin g’ + 5 .e?sin2p ... b, &5 sin 5 '

O _ gy _ Vo 3 5
@’ =1—3—53 b 2-—-~—e’2+g4e'4
3 5 41
a(f)._ 2—-3 é? 4 g;le"’ b= Z — 15 €2
P 10 k 31 161
a(z) —_ _;_ —— 2 6(3) i 0 g2
() __ 11 353 (0 _ 761
@ =G —ge* b =56
(4 1603 5 _ 2827
192 = 240
() __ 149
— 12

We can now assign any term of the expansion we are considering. Let ¢
and ¢’ be any two positive numbers, zero included, of which the sum does not

exceed 5: the part of the expansion multiplied by ¢ €7 cos? 1 I will be,
‘ ) . ; DL, L.,
cos (p — ¢) . {A(l " cos tmeos i w4 B " ¢in twsind p }
. @, ., @ 0, , .
+sm(cp—qo’).{-B( o sini¢wcosip' + b A s1nz"p,'cosz[»}:

and, by reduction,
RO @ ) @ @& (RN :
Aa "+ B0 B a "4+05 A . o
( )m%@—¢~w+zm

4 - 4

® @ @, @ (@’) (z’) ®
Aa B b B 6 . .
( + ) c00s (p— ¢+ ip— i)

+

o OG) ® ©_®,0

A B b B AL\ 5 }
+( . - ) cos (p— ¢/ — ip — ')

M @ OO O IRGING)

AV  —B7b B'a —b A , . .
+( —3 + ” .co8 (p— ¢ +ip 47 ).
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The other part of the expansion, that multiplied by e® €@ sin? L I, will be dif-
ferent in no respect from the part just computed except in the arguments of
the cosines, which must be changed according to the rule already laid down ;
so that, instead of the four cosines above, these which follow must be substituted
respectively,

cos(p+¢ —2v —ip—17 W)

cos(p+9 —2v+ip+iu)

cos (p+¢ —2v—ip+7w)

cos(p+ ¢ —2v+ip—i'y).

Every part of the expansion being comprehended in the formula, it follows
that all the arguments will contain the mean motions of the planets, excepting
the particular case when ¢ = 1, ¢/ = 1: for, in this case, p — w and ¢ — w are
independent of the mean motions; and the first cosines of the two parts multi-
plied by e ¢ will be,

cos (w — & — o+ &)
cos(m+a —2y—a—d).

These cosines have the same coefficient, viz.

B

A(l)a(l) + B(1) b(l) (l)a(l) +
4 - 4

1
A(l) b( );

And this will be found equal to zero, when the values of the symbols are sub-
stituted *. It thus appears, as far as the calculation has been carried, that
there are no terms in the expansion of 719;,—2—9 except such "as contain the mean

motions and are periodical.

. 1 . . .
3. We next proceed to the expansion of rE which is the more difficult part
of the problem. The value of cos w, already investigated, may be thus written,
cosw=1cos (p —¢ 4+ 0o —7)
-—sinzél.{cos(gb ~ ¢ 4+o—d)—cos(p+¢ +o4 6 — 2v)} :
* The coeflicient is equal to zero, because a(i) = b(i): and' for the same reason the coeflicient

AW @ 0,0 50 M 0,0
1 + 7

is equal to zero.

4p2
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wherefore,

D2=pr24¢r2—27r7 cos (p—¢ +0—7¢),
g=cos(p—¢+o—d)—cos(e+ ¢ +o+d—20u,
E=r24+r2—2rrcoswe=D2+2sin2ll.rr' ¢:

consequently,
1 1 . 7! . 22
T=D sin? % I.lﬁrgq + 4 sint } I.Zﬁ? q*;
and the three parts of -—;— must be expanded separately.

; . 1
Epansion of 5 -
By substituting a (1 — ) and &' (1 — §) for r and r/, we get

1 1
ﬁ:JaQ(l — )2+ a%(1 =5 —2ad (1—s)(1l — ') cos (¢—¢’+a—¢’);

and it will be found that the following equation, in partial differentials, is true,
viz.
1 1
d. =< d.—
1 D D
D=7 =9+ 47 (1=5).

All the possible values of —I]-y in this equation are comprehended in the for-

mula,

1
ﬁ=GXF;

provided F and G verify these equations,

G:Ti?(l-—s)-‘-—&“g(l—-sl)

dF dF
=5 0=9+ -5 (1=
We may adopt for G any particular expression’ which verifies its proper
equation ; and then F will be determined by the nature of the quantity sought.
Any function of (1 — s) and (1 — &) of — 1 dimension will verify the equation

for G ; and, taking the most simple case, G = 1—%_—;, we shall have

1 1
DT X F
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Now let

D, =,\/az+a’2—2aa’cos(¢—¢'+o‘—-a’);

then first, if we suppose s = 0, s' = 0, we get
1.

and again, if we suppose s = ¢, the result will be,

and thus we learn that

both when s = 0, s = 0, and when s = §. From its equation we know that F
must be a function of no dimensions with respect to (1 — s)and (1 — ); and
this condition, as well as what has been shown to take place on the two fore-

going suppositions, will be fulfilled by making F a function of '(l — i = :)
= le:_; wherefore the expression of ”IIT will be as follows :
1 1 S8 =35\
D= l—s'f(l-—s>’
f being the mark of a function which, in the present case, must be equal to
s—s

1
D; when T:T = 0.

. o . 1
Since s and s are small quantities, the expression of o may be expanded.

By neglecting quantities above the fifth order with respect to sand ',

) '
1 B ) & —s @) (5" — s)? (5) (& —s)®
T)*—*—-“l_s—l-B m-ﬁ—B "(”1—-“'—5)"3 ...... B .m.
In this form it is obvious that all the coefficients may be readily found. For,
by differentiating suecessively with respect to s’, and supposing s =0, s’ = 0,

in all the results, we obtain,

1 1
: d-— all
B9 1 B(I)___D_ p®— L ddQ &
— Dy — ds” = 12. ds7 ¢
But the expression is complicated; and in order to reduce it to a more ma-
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nageable form, every separate term may be resolved into a series of the powers
and products of s and s': which being done, and the quantities of the same
order classed together, we shall find,

%:B )+B() s --I—B(Q).s»ﬁ2 ‘—I—B(g)s'3 | +&e. ;

—(87-B)s—(3°-3").25¢y —(BY-B).3ss
+ (B(Q) —2B" 4B )s*-{- (B(s) —2B?+8%).54s

3) 2) 1) 0
—(B”-38" 458" —B”).¢
Or, in the usual notation of finite differences,

: 0 1 (2) 3) 4
5=8" 4+8”.¢ 18" 3% +B?. ¢ + &

)
—ABZ s —ABY. 958 —AB®. 3555 —ABY
-+ A? Bo.s2 -I—ZVB(I).SS’Sg +A2B(2).6s"‘s"
—ABy  —aBY sy

@
+A'B s
1 : . .
The value of {3 seems now to be reduced to its most simple form as far as s

and ¢ are concerned. If it be observed that, in every term, the exponent of
the power of §' is the same with the numeral affix of B, and the exponent of s
the same with the index of A, it will appear that the whole expansion is com-
prehended in the formula,

i () @i
A BY. Bss,

: . P S NN £ 3 g .
3 being the coefficient of s' s in (s'— s)z ", and 7, i, representing the several
positive numbers, zero included, of which the sum (7 4 ¢) does not exceed 5,
when the expansion is limited to quantities of the fifth order.

e 0O () _ .
4, The values of the quantities B( ,B( , &c., are next to be investigated.
If, for the sake of abridging, we put,

Q=a"(1—¢)—ad (1—5s)cos(p—¢ +0o—d),
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we shall get by repeated differentiations,

d 1

D Q
ds — D9
&
1 D_14dQ 1! 38 @
1.2 ds'g—Q'Tis"'D3+2'D5’
1
a3 — 4
1 “D_s 49 @ 5 @
1.2.8° ds® — 2 *ds *D* T g D
RS
1 D__S_() ;sdQ Q? 355)1
{852 d7 =8 D" 4‘ds'D7+8 - Do
&5

1 ___15(dQ) 35 dQ @ | 063 @
T3 545" ds — 8 \ds D7+ - ds *D° T g - piw

Now these expressions become equal to BY s B(Q), &c.; when s’ = 0, s = 0, that
is, when

D=D0)
Q=ad?2—adcos(p—¢ +o—0)= D"'—'"—-(gi:fﬁ,
9w

Let us now put

al?_*_aﬂ

S=a%—a h=a’9-a9’
then, De +f 10 A
o_+ ald 1+ 4
Q= 9 2 ds — f 2

and, by substituting these values in the foregoing expressions, and reducing,
we get

©) 1

B

= G+ )

<
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@ _ 3 /1 ﬁ) 2 — h pa
B =% (’D‘o T4 Dy

@ 0—15h N 6k9—48k+51 £
B =% D0+D0)+ (D3 )+ 6 - Dp
6 63 ) 175—140%( f 4) 804 —150k+135 (f2  f°
B =g D “'Doll + 5 (DO3 +"ﬁ§’ + 128 (1")" +ﬁ")
5, ddg
These quantities have been deduced from the differentials &, 5 . 5=
1 1
d = 1 dd D

&c. If the differentials ——, s &C., be used, the same results will

1.2°
be found, with this difference, that £ and %, retaining the same numerical
values, will both change their signs.

If we write  for (p — ¢' -+ ¢ — o) and differentiate the formula,

d 1
D™ ’ ada sin{
d o =—n'5n+23
o
the result will be,
1
ddi)_? / & 2 o* 5in?
o - aad cos a? o sin
g = =, 2—}- n4+2. ——7:
dy D"’+ D°n+
now,
12 2 2
r —2+a Dy
ad cos =—5— — 3,
: . Dt af o (a®.— a2y
a?a?sin? = — -—2%‘ -I-——-‘é“ . D2 -
wherefore,
dd——
D n? nn+1 a®°4+a6® n.n+2 (d¥—a%?

—0 = _._1_..+ .
d\V‘ —_ 4 ° Don 2 ¢ Don+2 4 * D0n+4 e
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whence we deduce

A D* __» 1 2("+1)h S
D0n+4"' n.n+2 "4 n+2 D, n+ 2 'D0"+2'
In this formula put » successively equal to 1, 3, 5, 7; then
1
Lo s YD 0 g
D~ 7 8 d{? "3'D0+ 3 Dg*
S
VAN e v WV Y S
DS~ " 15 d¢* T 5 -D03+“5‘-Dos;
ddw'f;’i
S a4 "Dy s pr 12k g
‘ij(?—'—'s‘r,' d‘b‘z _7—' 05+ 7 '—‘;7’
S2
5 s YD 7 6k g
DT~ T 63 dqﬁ“g']“)?"",g Dy’

V&
by and

By means of the two first of these last formulas, we can exterminate

3 2 3) . ‘
IJ); from the values of B( ) and B( ; which being dene, we shall find
0o
1
B(Q)_(l 11 dd]—);) 2+nr  f
=\7'D," 2 a¥/) T2 D

1 F
p®@={3=4 1 _9+2s ddDo) (4iﬂ+97z+9 F 1 Y4psy
e D, 12 - aw ) T\ T e DT ae

And, in like manner, by means of all the four formulas, we may exterminate

ffl 3 4

. ) (5)
Dp D7 Dy and -ﬁo-u, from the expressions of B "and B ; and thus are

obtained these values,

B(4)__ 3B +8h—-7 1 | 3B 4+8R48A+6 f
- 96 * D, + 24 * D2

1 A

12+ 32k + 77 40D, 1 dpe 1 49D

- 96 CTAYE 6 0 TdYE T32t AR

MDCCCXXXIII. 4B
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() QAR+ T5R + 928 — 55 i+96h4+300h3+341 R+ 200k + 159 f

B = 960 * D, 960 DB
1 Vi
96 7 + 30072 + 368 & + 725 ‘MD}? 12 4% 4 221 ddﬁ?
- 960 Ay T 960 1 dy?
VA S?
25— 4h d‘lD(f 1 dd]_)?

320 * dy® T 64" dY
If we take the second differentials relatively to +J in the first two of the same

2 3
, adl ddll;7
four formulas, we shall obtain these values of — ‘W" and —; 4‘;’ , Vviz.

J? 2l 1 S
ddD;S—— 4 d ]—j(') _1‘ d(lDO 4% ddDogj
T =TT -aw T3 aw T
S v S v 1 1 JS
dpy 4 UDs ser YD, sr by ser-9 “Uby
diy® T 15 dyt T 15 dyE T 156 7 d? 15 dyr
which being substituted, the expressions of B® and B will be as follow :
S a1
Y _3F+8h=7 1 SE4+82419 dp. 1 Tp,
== 96 ‘D, T %2 G taa T@
; ‘ da-L.
3P +8+8h+6 f k44 D2
24 DB 24 Tdirc

960 D, 240 *ody

1
v
25 + 44 d DO}

i
(5) { QUM 4+ THR 4 02k =55 1 UE L TSR+ 91 h—175 M”D;

e

960 DS 240 CdR

+ S )
1 _d__ Dy >.
240 * “d

Thus the six quantities B(O), B(]), &c., are all expressed in terms of —I—)L
- k . O

S
+{96h4+300ﬁ3+341h9+2007:+}59 S ik+aesn4ss Y9pg
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and -‘—gg, and the second and fourth differentials of the same two quantities,
X _

the coefficients being of easy computation, and depending solely on the mean
distances of the two planets.

5. The problem to be solved is, to expand in a series of terms arranged
according to the cosines of the arc +}, or ¢ — ¢ 4+ ¢ — ¢/, and its successive
multiples. Now as the quantities -]—;—0 and Df? and their differentials, are all
susceptible of a like development, what is required will be accomplished
merely by substituting in B©® s B(l), &c., the parts of ]—)1-(-), DJ-:;,, and their diﬂ'e,r--‘

entials, multiplied by the cosine of the same multiple of -}, instead of the
quantities themselves. The coefficients of the cosines in the developments in

, .
. . a a
uestion are functions of — or —; and, for the sake of convergency, we must
q a a 2

choose that one of the two fractions which is less than unit. Supposing thdi,
a is greater than a, and that n represents any odd number, we have,

n~—1

n—1 1__£2_ 2
f 2 _ al® x 1

D," a @ “ o
2
{1 +;lTé —Q—a—,cosw}

Wherefore, assuming as usual,

1
at a 2
{1 + e —Qg-cosxlr}2

the part of 1%—, and of its second and fourth differentials, which are multiplied
0

= %Cno -+ Cn(')cos«,b-!— Cn(Q)COSQm,L... -}—Cn(k)coskmlz...,

by cos k +, will be respectively,

coz]c\b C, (k) coelm[; —J2 Cl(k)’ coiz'lf\!; s¢ i Cl(k):

and the like parts of 1-37;, and its differentials, will be,
0
-2 , 1= ‘f- "2
——,f— X 03( cosk, —r— X — sz coslml/,

482

cos kl.
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It remains then to substitute these values in B(O), B , &c., in place of I_;" —ﬁ%,
’ 0 (g

and their differentials : but, in order to obtain the formulas most convenient
for calculation, it will be requisite to express the .coefficient of the develop-

ment of f)%, by means of those of the development of 1—;:‘ .
If we write « for %, and put

V=, FT&—=2acos,

we have this formula,

. . . 1 1 .
and if we substitute the expansions of  and v, and equate the coefficients of

sin k& +, the result will be

210" =o'V —uc,

We have likewise this identical expression,

(k=1)

1 _Vj___l—l—ue QO&COS\II‘
V=BTV TVt
el . 1 1 . .
and by substituting the expansions of xr and vz, and equating the coefficients

of cos k4, we get

ke k k-1 k

By combining the two formulas, we deduce
20 C3(k+ Y = (1+¢«?) C3(k) - 2k+1) CIU‘)
20Cy = (1 4+ a?) C?f")‘ —@k-1)¢".
Change % for & — 1 in the first of these formulas, and for % - 1 in the second,
and the two following formulas will be obtained,
2acP =4+ T - @k—1*?
2.0 =1+ TV er+ T
By combining the four last formulas in different ways, different values of C, ®
will be found, which may be used at pleasure, viz.
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. 1 4 a2 2 : k+1 .
1-C® =i+ {ER0" - 2564

~ ] (E=1) 14 a® . )
(1—0;2)03“)=(2k-—1).{1—:%,01 -5 ¢ }

(1 — e?) Cg(k) — 4k:-l-c- 1 . 12_0‘“2 ) (Clh—l _ Ck+1).
In order to shorten expressions,and to bring the formulas to a form convenient
for calculation, let

N , e=tani4;

then

, = ————————-—.*—'ksinéz

further, assume the new symbol a’(k), the value of which may be calculated by
any one of these formulas, viz.

2 = 2k+1). (Clk — sindg Cl(k+ 1)):
2=k -1).(simoc* " =),

4% — 1 . -
a(k)='”—zr . sin d (Clk ! _— Clk+l);

then,
(1 —a2) " =1n.a®.

Using this value, the parts of Diog and its differentials, multiplied by cos %+
will be

Coi{" 4/“ ~>< }La(k): cosa]f"b X — hk? a(k)’ M X bk a'k '

a

. 1 e 1 . .
These, as well as the like parts of po and its differentials, must be substituted

in B(O), B(l), &c. As there is no longer occasion to refer to any development

but one, C" may be written for Cl(k). In substituting we omit the common

cos &y
factor ——, and put
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for the expressions into which

(0

B, 8", B?.....8®

are changed, so that,
5,® =

%) 1 ()
B =1c® b

. (8 1 1 @, B2k
bz( z(z-[-'-g— 2)(:«(/-]—""_74“““‘.21(),

(%) 83—k +le 458 97z + 9% y; ()
b, =( LRSI R +154). 2%,

(_Slz + 8Ah—17

S+ 8R+10 L,  BY @
-+ 2 k +Q—4)C

SH 4 8B+ 8R4 6 | B+ 4k ®
+( 54 +—3z .kZ).a

A)__( QAR 4 TER 02k — 35 , 24R3+ 75R L OLA 4+ 175 2
=\~ 960 + 240 .

25 4+ 4% (%)
4220 m) .C

(96 15+ 300 M4+ 341 /3 Q00 A2+ 150 % . T/ +25 B2+ 53k ¥z
+ 960 + 240 K +3:0

®

And, these symbols being established, the part of i%' we are in search of, that

is, the part multiplied by cos k(¢ — ¢’ 4 ¢ — ¢), will be thus expressed,

cosk (p=— ¢+ o —o
o

® %) G k
{ + b s' + bz( L7+ 173( ). s 4 174( g + b;k)

Al 5= Ab . 2sts— AB 32— A asBs— AR 554

+ A? bo R A bl .3s’s2+A262(k) '2s2+AZb_;(k) 10.9'35.2
3
— a3, ¢ — o aso— psp ws'w
+A4b0 ..5‘4 +A4b 5 slgt
<1:) E
— A5 b,
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By the foregoing analysis the problem is reduced to a series of terms com-
prehended in the formula,

i k ) )
+ A bl.(,)x Bs" s cosk(p— ¢ + o —d
' and ¢ representing all positive numbers, zero included, of which the sum ' 4 ¢
does not exceed 5; 3 standing for the coefficient of s s'in (' + s)i’+i; and the
upper or lower sign taking place according as the index of A is even or odd.
Although all the coeflicients are supposed to be deduced from six of them, for

which alone direct expressions are given, it is nevertheless obvious that an in-

dependent formula may be found by which any proposed coefficient may be

: ; e (®) (& .
separately computed: namely, by substituting the values of b, , b, ), &c., in

the expressions of the several finite differences.
Although there can be no difficulty in applying the formulas, it may not be
improper, for the sake of illustration, to take an example. We shall choose

the instance of

Venus and the Earth.

In this case &' will represent the mean distance of the Earth, and a that of

Venus: wherefore,

2 = w=07323332 =tan 14, 0= 71° 45' 32",

!

S

L — 31047202, log. sin 6= 9-9776083.

cos 8

N

The method likewise requires that there be previously calculated a sufficient
number of the first coefficients in the expansion,

1 © @ @) (%)
V1+ae_2acos¢=f§—C +C cosy +C cos2....C cosk....,

which is accomplished by rules amply detailed in all the treatises on Physical

Astronomy. We next deduce the value of a(k), viz.

it k . 3
a® = 2k+1). (C()—— SméC(l +l)):
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and, with the numbers thus found, we have generally for any proposed value
of %,

o (®) (%)

S
Il
aQ

>

k )
5" =3 c"” 1159736 . ¥
K )
b2( - (74- +—2) . 4+ 4148019 a®
(k) (%)
b, = {— 0008113 + 1'282453 . 42} . C
+ {10°459698 - 0-266227 %2} . 2
(%) 1)
b, = {—0-512255 + 3132352 Ic2+§} .c”
k
+ {28:09035 - 0-057713 A2} .\
*) P
b = {—1'861383 + 8390554 k24 0157412 &t} . C'

k
-+ {80°06813 4 2-719660 A2 -+ 0133113 A} . a.( ‘

Nothing can be more easy than the computation of these six quantities for any
assigned value of 4. The other quantities, being the several orders of the finite
differences of the first six, will be known when these have been computed: but
it will be convenient and will often save much calculation to have an inde-
pendent formula for every coefficient separately.

I (k
—ap? = 31¢" — 159736 . ¥

® (1 B B :
—an"=(5-25) c® = 2551559 a®

*) ®
— Ab, =1{0258113 — 0782453 42} . C

— {6:31078 -} 0°266227 A2} . a(k)

(%) k)
—Aby, = {0~504142 — 1:849899 A2 — z";} c®

— {1763065 -+ 0691486 A2} . a®
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k k)
— A5, = [1-34013 — 5258202 &2 — 0115745 4} C'
— {51'97778 + 1761947 &2 4 -0133113 A4} . a™®
k ] 2 k)
arp, = (Z + %) c¢® + 0954199 . a®

k (k)
a5, = {— 008113 + 282453 &%} . C

1 (375922 4 266227 &2} . 2’
225" = [ — 24603 4 1:067446 A? 4- -041667 ks} . C
+ {11-31987 + 0425259 &2} . 2"
A2 5" = (— 84499 1+ 3108303 2 4 074078 A} . C"”
+ {34'34714 4 1070461 42 + 0133113 A4} a
— A= (025811 + 217547 A2} .
~ {2'80502 + 266227 &2} . 2"
— a3, = 23792 — 784993 &? — 041667 A4} . C
— (756065 -+ 159032 A2} . a®
— A%h," = (59806 — 2:340857 k2 — -032411 /) . C
— {23:02727 + 645158 &2 4013113 &4} . 2™

® = (020197 + 1002540 &* - -041667 K4} C

Q)

A% b,
4 {4755663 — 107195 k2} . a

g k
A5, = [(— 36104 + 1555864 & — 009256 K} . %

3
4+ {15°46662 -+ 486126 k2 4+ 0133113 %} .a()

(%)

k
— AS by = {-38124 — ‘553324 k% + ‘050923 k*} c”

k
— {1071099 + ‘593321 &2 + -0133113 A4} . a®.
According to these formulas the calculation of any of the coefficients is an
easy arithmetical process. In order to be able to compute, in any term of the
MDCCCXXXIII. 4F
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expansion of —I-lj, the part of any proposed order with respect to e and ¢, no-
thing more is wanting than a method for reducing
‘ Bs’i’si cos (¢ — ¢ 40— )

to a series of simple cosines. On this point some observations will be offered
below: but, without proceeding further, there is no difficulty in this respect,
when we confine our views to quantities not passing the second or third order,
which comprehends all the perturbations useful in astronomy, except  the
inequalities of very long periods.

If we combine the planets two and two, as is done in the sixth chapter of
the sixth book of the Mécanique Céleste, and for every two planets construct a
formula such as is exhibited above for Venus and the Earth, limiting the extent
of the calculation according to the nature of the case, the theory of the pla-
netary disturbances would be rendered more accessible, and would be freed
from the tedious and disgusting labour which has rendered astronomers averse
from cultivating this branch of their science.

6. The expression, '

s s cosk @—¢+o—0d)

may be reduced to this form,

cosk(p—9). { (si cos ko) (s’i’ coskd) + (si sin k o) (s'il sin & o")}

—sink(p— @) .4 (s sin ko) (" coshe) — (s coska) (s sinke) |

Here the quantities within the brackets are serieses, of which each contains
the mean anomaly of only one planet, and comes under one or other of eleven
different forms, namely, the six,

coska, scoske, s2coska, .. .... scosko,

and the five,
sinka, ssin ko, s?sinks, ... ... stsinko,

the quantity s°sin % ¢, which is of the sixth order, being omitted. None of these
serieses, when carried to quantities of the fifth order inclusively, and arranged
according to the sines and cosines of the multiples of the mean anomaly, con-
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tain more than six terms, and they thus afford a ready way of calculating the
part of
s s cosk(p—¢ +o—d)
of any proposed order with respect to e and €.
These serieses are as follow :
k& e‘l
Cos ks = (1 — k2e? — *Lze +
St et — 2 Jhet) . ecos
- (4 T e “
4 ,2 ’
+ (lc2 —%— ke — Zf—;}i) .e2cos 2 w

5 P
+("f?k2— %kzz-ez_. —é-lc4e2).eﬁcos3;b

+( 1% —{—?SZk).e*‘coszI(A

+ (Zi +7lc%) € cos 5 .

5t 13/3¢t e
bmko*:(?k— + 56 —IBe? 4 —— 36 -+ b) esin
11k 5 k3 ® -,
+ *“2‘4—8‘—*71—').8251112(/1
13k 43 P 307 k3 ¢* et
oy __ e
(«z4"'64ke 3 192 ) e*sin3

+ (m§k—l—~k3).e4sin4y,

1097 179
+(960 k4 ok + 60) & sin b .
e 2 et
scosk:r:———g 5

564 ket 37kt . Kt
+(1 s+m <2+ g5 +“1?)-e"°sf'*

+(%—%’;—ls2e2)‘.ézcos2}z
4r2
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3 45 ¢ k® 183.8%¢* ke
+(§"‘128+—— 128 )"’SCOS?’F‘

+(—— - .640084(b

125 | 475
+ (384 +3ma %+ 24) € cos 5

. 7 3 5k%e? .
SSIIlka'::—-k('é‘eZ —Ee‘l— *@—).esm(h
2 ,2
+k(1 —--—*e2 ]—c-s—e) .e’sin 2 p

5 o2 2,2
+k(_g._“(;’6'e _3"7”) 6351n3(b
50 Y/ .
+(Z§k+~6—>.e4sm4po
11 19 .
+(—é",{+48k3).€581n5lb

€ ket
2 —
s2coskeo = 5 n

—_ (523— gz-l-li—ff).ecosw
+(—;—-——£;—).ezcos2(b
(ST g,
+ (—;‘—+—"§).e4cos4p

+ (48+ llg).eﬁcosw

Ice"’ lce“ ket
2 -—— B
s?sinke = + 55— 12) e sin

3k .
—-—;—.ezsm2pa

k S5ke® B .
- (-2"——'6—-‘-—'—172——) .e3sin 3 w
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+ 10 .etsin4 w
13; -l- .esinb p
«5‘3008100'=-—~§“e4
(—-— e — — + k2 e“) e Cos
2 2 ,2
(———-9—3 '-%{).ei"cos&w
3
+ 5 .etcosdp
15 &
+(§—2‘+*§‘).850085{b
2
s-”sinka=—7{c:1 e sin +—- e2sin 2 +-3*§— e sin 3 w
. 1 .
+§.€4SIH4(JJ + -g—;.ef‘sm5pu
364 et ‘ e , & &
stcosko = get —— .ecosp+ 5.e2cos2put 4 . e cos3 p
Lot o
+g.etcosdpt 7. cosbp
. . 3rké . 1 .
ﬁsmka:%.esm’p-{-—-gg.e381n3,w+ 5 -esinbp

scoske= é—854».(9(305{1, + %%i.ez'cosslw+ ‘1']’6 € Ccosb w
The use of these serieses is obvious. If we wish to determine all the argu-
ments of the order ¢ ¢ in the term multiplied by cos & (p — ¢ + ¢ — o), of
the development of —1—1)— , x and 2’ representing two positive integer numbers, zero

included, of which the sum does not exceed 5; we first set aside all the parts of
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the expression in which ¢ is greater than «, or ¢’ greater than a’, for these con-

z o
tain no quantities of the order e ¢ . Let
)
A b( X s e cosk(p—¢ 40— )

be one of the remammg parts, in Whlch ¢ is not greater than «, nor ¢ greater
than «’; in the serieses s cos koand s sin ko, take the terms A e cos x w and
3 7

x - . ’a/
Be sin 2 ;,e,; and, in &' cos ko’ and ¢ sin ko, take the terms A’ ¢ cos o/ @

’

and B’ ¢ sin & '; then all the arguments of the order e ¢ will be contained

in the formula
i : @
Ab, XBee€ X
cosk(p—¢).{AA coswpmcos 2’ ' + B B sinxpsina’ '}
—sink(p —¢).{A'Bsinawcos 2’ p’ — AB cos x psina’p'}.

And thus are computed all the quantities of the order ¢ ¢ in any‘term of the
development of ]—)1~ The procedure is exactly the same with that followed in
the expansion of the first part of the distﬁrbing function in § 2. All the argu-
ments of the order ¢ ¢° are only four, comprehended in the formula

k(p—¢)Zaptap,

which represents all the different ways of combining x  and 2’ /, by addition
and subtraction, with % (p — ¢'). Hence it is easy to ascertain the orders of
the same argument, or the relative magnitude of its coefficients, as it recurs

- 1
in different terms of the development of 3.

7. We have next to consider the parts of the disturbing function which de-
pend on the inclination of the orbits.
c o 1
Development of sin® 5 1.5 .¢.
Omitting quantities above the third order with respect to s and " in the ex-

. 1 .
pression of gy found in § 3, we have
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0) o)) @ ®)
5=B"+B"y4+B%2 4B
0) n o, @

—AB( s—-—AB( 2ss — AB 3547
© ey ,
+ AZ2B sz - AZB 3s2y

' © .

— A3B s,

© D
As the values of B , B , &ec., contamD and its powers, they may be re-

garded as functions of cos +J: taking the differentials with regard to this vari-
able, we get,

dB B a a’ ad f __ad % (©

1)
dB _edf1 f 3 JS* \_ ad M
d(eos¥) T (?’D?"“z“-bﬁ =7 XB

(2)
4B ad {3 f  6=3k jf2 15 SP) _ad B0
d(cos¥) = 7(§ﬁ§+—*z‘“-1705+—é‘ Di)="F X8

® . .
dB”  _ ad 5 f | 27—18%k 45 —80h  f% 85
dcosy) — X(i?e'ﬁ;s"l-“—*“—m D°+ 16 "Dy T 16Dy
=—X B
7 X
If we now differentiate the above formula for D> and observe that
aa ad 1, tan g
f T =& "‘_Q_\/m_ = e
the result, when the new symbols are introcluced, will be as follows :
! tan. 0 A 2, s) ,
T = o {B’ +B g +8% 4BV

0 KQ)) 2 ;
— AB s—AB .2ss'— AB" "8s4™
9 I(O) 0 /(1) o b
+ AZB" 2 4 AZB7 342!

0)
—ap
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0) M) . .
The values of B'( s B( ,» &c., may be reduced to expressions that contain only

1 . . .
ﬁ;and %g and their second and fourth differentials, by the same process that
0

. © LM . . . .
was applied to B, B( , &c., in § 4: and in this manner we obtain,

O f
B =P
dd-L.
B,(l)___ 1 1 9 D, 4h+__1~ S
=—%-p,— % apr T2z Dy
1
d d——
(2) 3h + D
B = — 2 g = Bh42) g
3 7 . vdd,,-f(,;.gw
+(3h2+2h—-z).“5‘0§—-‘é‘.“3—¢@“
P 3 7,2 dd——]__— d4‘_"1""'
B,(3) 4R 4 eth41 1 48RP+ 540+ 1 D, 1 D,
= - 81 D, T 2 S T a ala
dd—Lt— S
06434108 A2 —23 % — 33 L 10249 D3
+ 24 DS T 12 dy®

The term multiplied by cos £+ in the expansion of %5«, will now be ob

RTINE ( R O)) 1 o
tained by substituting in B” ', B" ', &c., the parts of B, '1{65’ and their differ-
entials, multiplied by the same cosine. Let

BT %V,

(k) cos kY b,(7) cos Ic kY b,( ) coski

Td d

b ,(k
denote the expressions into which
© D @ (8
B.,B ,B ,B
are changed by the substitutions mentioned ; the quantity sought, or the part

of the expansion of sin? 3 I X —;)l; X ¢ multiplied by cos & , will be thus ex-
pressed,
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sinftl.cosk(p—d '+ —0) x¢q
Z

A e A

X

tan ]

, o )
-—Abo s — Ab, 2ss— AV, "3
I(lc) o , I(k) ,
4+ AV, 2 + A%, 32

%
RIS
JORNG :
and the values of ¥/, ', ¥, ', &c., will be as follow:

(*) k)
b, =h. a( R

Pz (1421 +4—}‘——+-—é 2%
b’ik)=(3k2).i]ii:~1.0(k)+ (3% +2kgh+o.k).a"
®_ { _aap +;47h t1, 48R +1524/z+ e %‘i}.cm)

96 %t + 108}132; Q302 — 3834 + 107121-;- 9k ]fg} ‘a(l‘).

By taking the several orders of the finite differences of these four quantities,
the other six coefficients may be numerically computed, or an independent
formula may be found for calculating each of the six separately. The expan-
sion of this part of the disturbing function is therefore reduced to the ex-
pressing of |

Bs’i'si cosk(p—o+4o—0d) Xgq
in a series of simple cosines, ¢ and 7 being any positive numbers, zero included,
the sum of which, ¢ + ¢, does not exceed 3, and 8 being the coefficient of s’i’si
in (s + s)i’ * i. By substituting what ¢ stands for, we have,
& s cosk p—d¢+oc—0d)Xxgq
= %s’ilsi cos(k—1)(p—¢ +0o—7)
+idscosth+1)@—¢ +o—d)

MDCCCXXXIII. 4 ¢
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- %s'ysicos(k—1.—§Dk+l.¢'~2v+k— l.o—k+4+1.0)
——%s’t’szcos(k’—l-l.@—]t—— 1.¢0=2v+k+1.o—k—1.0).

As the arguments in the expansions of these four terms are different, each

term must be computed separately, for which purpose the method in § 6 may
be used. Thus

i

' cos(k—1.0—k+1.¢0—2r+k—1.0—k+1.5)
=cos(F=1.0—kF1.¢'—2). { (¢ cos (k—1).5) (" cos (k1))

+ (s'sin (= 1) ¢ ) .(*sin (k+1)o’)}
——sin(lc*:-].¢-k-~}“-_i.<p'~——2v).{(sisin(k—l)a).(s’i’cos(lc+l)o*’ |
- s*’cos(/c—1)0).(fsin(k+1)a')};

and the quantities within the brackets being known serieses, the part of the
expansion of any order ¢’ ¢, is readily obtained.

8. One part of the disturbing function yet remains to be considered.

2,12
Ezxpansion of sint 31 X 3. 1%;—- X ¢

. r . ‘ -
In the expression of —TD—; found in § 7, leave out quantities of the second and

third order with respect to s and +, and we shall have,

‘ r / n .,
-;—.I),a tane)( {-‘—B +§B’( .e cosp/
0
— 3 AB .ecosw.
Now let
dEV(O) ad I ad B"(O)

%'d(cosq,) =F-ipg=TF X

aB"  au 15 )
%d(cos‘p) ( ipst 7 )“’”" B’

. . 1J 3 . *
and differentiate the formula for 3 . %; relatively to the variable cos +J, intro-
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ducing the new symbols, and observing that fl-;- = mno , the result will be,
2 2 2
g,%%—: tan* {B” + B~ e COS[L
—~ AB” e cos .

243 (0 AD : . 1 . f
The quantities B Vand B » when expressed as before in terms of i5- and -Dj—g
0 0
and their differentials, will be as follow:
1
B S? 1L _ o4y i

— e = o L
.._..g..DO5— g . N dq’g +2h DO,

1 f

- R S R R LS
(8h+l)'(4"D0 d‘pzo (Sk +h %)'Do3 d\ngo.

Proceeding as before, let
cos aliq; b"(lc) nd cosal/c ]

represent the expressions into which

0 1)
B"( )and B"(

(k)
% an ,

are changed, when we substitute, instead of and Df 5 and their differentials,
the parts of these quantities multiplied by cos k) : then the part multiplied

2
by cos k) in the expansion of sin* ; I X 2 -%Trf,—' X ¢°, will be thus expressed:

sint 3 I x cosk(p — ¢ + o —0d) xqu
/ .

a

k) )
{ b"( + b’( .ecos u'

tan‘2 6

— Ab”o ecos,»;
(® S8,
and the values of ") "and 4”, " will be as follow :
b"(") 4k Le®lggea
= gr+ ! +{8h3+k2——h+lk2} ),
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The coefficients for any proposed value of % may now be readily computed ;
and nothing is wanting in this part of the problem but to reduce the factor,

cosk(p—¢ 40— 0). {cos @—0+06—0d)—cos(p+0 -+ —2v) }2,

to the form,
M+ M X esinp + M x ¢ sin

and then to multiply by it, retaining in the product only quantities of the first
order relative to ¢ and ¢. Now in this there is no difficulty : but the complete
development of the expression would be bulky, and would contain many argu-
ments, the greater part of which are insignificant and useless, although some
of them deserve attention in particular researches. Leaving astronomers to
select from the general expression the arguments which may suit their pur-
pose, we shall here close what we had to offer respecting the development of
the disturbing function, without adding to the length of this paper by any
application of what we have written.

May 30, 1833,



